
CMS Reverse Engineering
AD-A243 438

Encore/Model Integration

DTIG
Contract # N00014-91-C-0240 F' TF

Office of Naval Research DEC 7 j99'1

Arlington Virginia 22217-5000 C

Data item A001

Bi-Monthly Progress Report

Reporting Period

September 1, 1991 - October 31, 1992

General Electric Company
Corporate Research and Development

P.O. Box 8
Schenectady, New York 12301

91-14938 91 1104 039

DISTRIBUTION

Mr. James G. Smith Mr. Lambert C. McCullough
Office of Naval Research Department of the Navy
800 North Quincy Street Office of the Chief of Naval Research
Arlington, VA 22217-5000 Arlington, VA 22217-5000
Attn. JGS, Code 1211 (Contracting Officer)
Ref: N00014-91-C-0240
(Scientific Officer) Ms. Tamra Moore

Code U033

DCMAO Hartford Naval Surface Warefare Center
130 Darling Street 10901 New Hampshire Avenue
East Hartford, CT 06108-3234 Silver Spring, MD 20903-5000
(Administrative Contracting Officer)

Mr. Phillip Q. Hwang
Director, Naval Research Laboratory Code U033
ATIN: Code 2627 Naval Surface Warefare Center
Washington DC 20375 10901 New Hampshire Avenue

Silver Spring, MD 20903-5000
Defense Technical Information Center
Building 5, Cameron Station Lt. Barry Stevens
Alexandria VA 22304-6145 Code 6113
(2-copies) Department of the Navy

Fleet Combat Direction Systems

Mr. Ali Farsi Support Activity, Dam Neck / -

Code G042 Virginia Beach, VA 23461-5300
Naval Surface Warefare Center
10901 New Hampshire Avenue
Silver Spring, MD 20903-5000

Acoeea1a Fr

lj L-44 Iaa ,W d L_
jl 'a t itg ealt I Or__...

Nl!l

Statement A per telecon AviUl t 7 Cojee
James Smith
ONR/Code 1267 I wa lere-'---
Arlington, VA 22217-5000 0t!tl
NWW 12/5/91 -Ll

TO: Distribution

FROM: Margaret Kelliher

DATE: October 31, 1991

sUBJEcT Bi-Monthly Status Report - Contract # N00014-91-C-0240

1. Task 1: Language Processing and Analysis

In order to assure the quality and validity of the CMS-2 grammar being used to extract informa-
tion for Reverse Engineering, an effort has been made to collect a number of "typical" source
code examples. Currently, we are in possession of the following CMS-2 and CMS-2Y code.
(CMS-2Y is a dialect which is compatible with "standard" CMS-2.)

A total of 94 files (52,000 lines of source code) has been received from NSWC which constitutes
unclassified portions of a Mark 116 Mod 7 Mission Support Computer Program.

Three source modules have been received from Feet Combat Direction Systems, Dam Neck, as
follows:

Module - 1 consisting of two files containing 5,600 lines of CMS-2Y source code. This module is
a portion of the common system module in an FFG 7 class operational program which maintains
an intercomputer interface.

Module - 2 consisting of six files containing 17,500 lines of CMS-2 source code. This module is
described as being a WSN-5 inertial navigation simulation program.

Module - 3 consisting of twenty three files containing 3,000 lines of CMS-2Y source code. This
module is described as being a portion of the training function of the CG/DDG ADCS Block 0
program.

We have successfully tested our parser against (minimally edited) examples from each of these
systems. We are currently working on the design for COMPOOL handling. We do not currently
support the following constructs:

CSWITCH - conditional compilation directives

MEANS and EXCHANGE - macro substitution directives

COMPOOL - Task I is currently addressing Compool processing

No effort will be made to deal with CSWITCH, MEANS and EXCHANGE directives. As a
result, we anticipate that some editing of the input files will remain necessary.

2. Task 2: Data Extraction & Interface To Teamwork/SD

An initial demonstration system is currently operational which produces a CADRE Teamwork/
SD structure chart from CMS source code. This demonstrates the capabilities of passes 3 and 4.

The portions of the reverse engineering software completed to date have been used to produce the
necessary data for the CADRE cdif files which were then processed with CADRE's C-REV and
Teamwork/SD to produce our first examples of working structure charts. A copy of a structure
chart produced from an NSWC file is included with this report.

We have completed about 2/3 of the Pass 3 design, and roughly 1/2 of the implementation. Pass4
exists in its entirety. We have drafted a design document to show how we're proceeding, which I
am also including in this status report.

The tasks remaining to be completed in Pass3 are the production of Module Specifications and
Data Dictionary Entries in Teamwork/SD, and the generation of compool and include file hierar-
chies. Also remaining is the choice of software to be used for the acceptance test; the selection is
to be done by mutual agreement between NSWC and GE.

3. Task 3: ENCORE/MODEL Integration Study

On August 29th a meeting was held at CRD with Noah Prywes of Computer Command and Con-
trol Company. Two possible avenues for the integration of Model and ENCORE were identified:

integration with Elementary Statement Language (ESL), or

with the Entity-Relationship database.

We requested information from 4C regarding their internal data structures, so that a decision can
be made as to which avenue is preferable. We have received some of that information, but only
regarding the ESL possibility. We need to see information about the Entity-Relationship graph
before we can analyze the possibilities and make a decision.

Octobe 31. 1991 2

GENERAL ELECTRIC COMPANY
CORPORATE RESEARCH & DEVELOPMENT
P.O. BOX 8 (BLDG KW, ROOM C247)
SCHENECTADY, NEW YORK 12301

FINANCIAL STATUS REPORT

PROJECT TITLE: CMS-2 REVERSE ENGINEERING AND ENCORE/,MODEL INTEGRATION

CONTRACT NO: N00014-91-C-0240

PERIOD OF PERFORMANCE: 08/01/91 THROUGH 04/29/92

CONTRACT VALUE: $126 FUNDS AUTH: $100

FOR PERIOD ENDING 10/29/91

C. TOTAL EXPENDITURES

Current Period (08/01/91 - 10/27/91) $45.

Cumulative Total to Date $45.

COMTS:
Dollars in thousands

G.D. COYLE 10/31/91

dbE- MSMGSR;le
File Ulhole-SC Ulaw Di annotate Print AUtoGA-aph Brows@ DPI RET

nfig-f

M/Ecsh

Rights Reserved.
73/sys/conflgfils-

a Function with no c

is a Function with no

a Function with no c

CMS2 Reverse Engineering

Pass 3 Design Document

Margaret Kelliher

1.0 This Document

This document contains the high-level and low-level designs for the pass 3 phase of the
CMS reverse engineering tool. It is intended both as a working document and as a starting
place for future reverse engineering tools which may want to reuse parts of our approach.

2.0 High Level Design

The purpose of pass 3 is to read in CMS-2 source, extract information from it, and write
the information out to the middle files. The overall view of pass 3 consists of a main rou-
tine which handles the command line interface and drives the parser and the node process-
ing. Node processing consists of a high-level driver which sorts out the nodes that come
in, mid-level routines which further sort the nodes, and low-level routines which will do
the actual processing of the nodes, ie the writing out of the middle files.

2.1 Command Line Interface

We are deriving much of our user interface from JRET's pass 3. We have not decided
exactly which options we will support, but at the very least, we will include the following:

" -P filename: specifies that the following argument is a filename containing a directory
search path

" -F filename : specifies that the following argument is a filename containing a list of files
to process before any other input files

* -c: produces middle files for compool modules; default is just system modules

* -csci csciname: indicates that the name specified is to be used as the default CSCI
name

2.2 Parsing Strategy

We are reusing the parser from the CMS-2 translator. We will parse the COMPOOL files
separately, before the main file which references them.

CMS2 Reverse Engieing Odober 22. 1991

2.3 Processing Strategy

Our basic strategy is to divide the CMS-2 nodes into 6 basic categories, each of which will
be processed in a separate package. The top-level routine will determine the category to
which a node belongs, and will send it to the corresponding mid-level routine. These mid-
level routines are responsible for determining whether the node is to be processed,
ignored, or bypassed. If it is to be processed, a low-level routine is triggered which does
the node-specific processing required.

The 6 basic categories are as follows:

" structural statements: generally only needed in order to access the more interesting
types of statements to which they point.

* options: generally uninteresting, except in the way they affect our interpretation of
other statements.

" subprogram declarations: contain the subprogram name, formal parameters, the loca-
tion of its declaration, and access to its executable statements.

" data declarations: if global, we are interested in the declaration's location, type infor-
mation, and any structures the declaration may contain. We also note any references to
other global data and types.

" executable statements: examined for references to global data items and calls to sub-
programs.

" substatement clauses are clauses which occur only within a statement and are not
themselves statements. The upper- and mid-level routines should never encounter these
types of nodes, and they will be processed, as appropriate, inside the low-level routines.

For a complete breakdown of the nodes, see Appendix A.

2.4 Basic Data Structure

Our data structure is the ADL parse tree which is used in the CMS2-to-Ada translator.

3.0 Low-Level Design

3.1 Packaging Summary

The major packages will be as follows: (italics indicate a generic package)

(* indicates almost complete reuse; # indicates significant reuse):

" Main * (contains main driver, handling command-line interface and file control)

" Parsing *

* Lexical Analysis *

Pass 3 Desip Doomnezn Oiaber 22,1991 2

" ParseControl * (helper package which deals with parser and classification routines)

" Classification (high-level node-processing routines; basically sorts them out)

" StructureProcessing (mid- and low-level routines)

" OptionProcessing (mid- and low-level routines)

" Subprogram-Processing # (mid- and low-level routines)

" DataDecl_Processing # (mid- and low-level routines)

" Executable_Processing # (mid- and low-level routines)

" PrintMiddleFile # (language-independent printing routines; mainly utilities)

" Source-file database * (associates nodes with file names and line numbers)

* Scoping * (keeps track of which data items are global)

" Subprogram Lists # (data package for communication between SubprogramProcess-
ing and ExecutableProcessing)

* System-Info (data package indicating what the current options are and what structure is
being processed; set from Options-processing and StructureProcessing; get from
other Processing packages; possibly to include command-line options too? or should
these just be passed along as flags?)

" Symbol tables and symbol table management * (several related packages)

" CMSrecords * (data structure)

" CMSinterface * (access routines for cms_records)

" CopyFileHandling # (to produce copy-file hierarchy)

s Compool Reporting # (to produce the compool hierarchy)

Pass 3 Design Document October 22.1991 3

Othersexca

E J=rtlatively language-independent E J=language-dependent

FIGURE 1. Withing Relationships between Packages

Pass 3 Design Docun~t October 22. 1991 4

3.2 Details of Packages

3.2.1 Main Package

The Main package will contain the Main routine. The main routine will decipher the com-
mand-line parameters and control the main loop which calls the parser and the node pro-
cessor once for each file specified. Most of this code can be reused from JRET.

Questions:

1. Which command-line flags do we want in the full system? All of them?

2. Which flags do we want ready for the demo (early November)?

As few as possible as long as we can still run; probably none.

3. Which package is responsible for copy file hierarchies?

In JRET, copy_filehandling, whose routines are called by the lexical analyzer.
(Shouldn't be necessary for November)

4. Which package is responsible for compool hierarchies?

In Jovial, extractinfo. I guess we'll make some new packages to handle it. Will we
have enough info (without compool nodes)? (Shouldn't be necessary by November)

It looks like we will have compool nodes after all...

5. Will the main procedure be responsible for sending information to the SourcefileData-
base?

In Jovial, the main procedure calls a subprogram in SourcefileDatabase, with the name
of the next file to be processed. This same filename is then passed to the new initializa-
tion routine of the parser. We intend to do likewise.

It is possible that this will be changed so that all calls come from the parser. This would
make things cleaner. It is being investigated, but is low-priority...

The Procedure Main will be reused directly from JRET. It will call the parse-andprocess
routine in the parse_control package, which will call the parser and the Process_aNode
routine in the classify package with tb. topmost node of the parse tree.

3.2.2 Parser Package

The Parser package will contain the parser. This is being reused from the CMS-2 to Ada
translator. There is still some work to be done regarding compools, cswitches and macros.

Questions:

1. The parser should interface with the SourcefileDatabase package, associating line
numbers (and source files) with nodes.

2. How i. the parser structured with regard to withing of packages. Is it fairly stand-alone,
or are there lots of circular dependencies within the translator that need sorting out?

Pas 3 Design Docnment October 22. 1991 5

3. The parser is currently a function. Do we want to change it so that it is a procedure
using RecordParseResult from the ParseControl package'

3.2.3 Lexical Packages

The Lexical Packages will contain the lexical analysis. This is being reused from the
CMS-2 to Ada translator.

Questions:

1. Do we need to add calls to copy-filehandling in the lexical analysis in order to get the
copy file hierarchy?

Yes. Not needed for November demo.

3.2.4 ParseControl Package

The ParseControl Package contains two subroutines: Parse_andExtract and Record_-
ParseResult. Parse_andExtract calls the parser and then, using the resulting node, calls
the classification routines. It is called by main. RecordParseResult is called by the
parser. It stores the result of the parse into a ,ariable which is local to the package so that
it is available for ParseandExtract.

We will make this package generic. (the three things to be specified at instantiation are the
names of the parser and parser initialization and the type of node).

(For the short term, we will also change the call to the parser so that it reflects the fact that
the cms parser is a function rather than a procedure.)

3.2.5 Classification Package

The Classification package will contain the following subroutines:

The procedure ProcessA Node takes as input a CMS_Node (N), and probably some
command-line flags. The logic is as follows:

if isstructuralnode(N) then Processstructuralnode(N, flags)
elsif isoption-node(N) then Process-optionnode(N, flags)
elsif issubprogramdecl(N) then Process-subprogram decl(N, flags)
elsif is_data.decl(N) then Process_dataccl(N, flags)
elsif isexecutablenode(N) then Processexecutablejnode(N, flabs)
else null
endif

The functions Is Structural Node, Is-Option Node, Is Subprogram-Node, Is Dat-
a Decl, and Is Executable all take as input a CMS_Node (N), and return trn if N is of
the type specified in the function name, false otherwise. They will be implemented with
case statements, most likely.

Pass 3 Design Document October 22. 1991 6

The procedure Process Seq.oNodes takes as input a sequence of CMS nodes (S) and
probably some flags. The logic is as follows:

for each element x in S loop
ProcessANode(x, flags)
end loop

The procedure ProcessExpression takes as input a CMSNode (N), and probably some
flags. The logic is as follows:

case kind(N) is
when binary-exp =>

Process Expression(getleft(N), flags)
ProcessExpression(get-right(N), flags)

when bit-call => Process.Expression(getLbit-count(N), flags)
(ignore dataunit for now)
Process.Expression(getstartingbit(N), flags)

when built in-func =>
Process-Seq of-Expressions(

get-inpuLparameters(N), flags)
when char_call => Process_..Expression(geLchar_count(N), flags)

(ignore data.unit for now)
ProcessExpression(geLstarting-char(N),flags)

when paren-exp =>
Process-Expression(getright(N), flags)

when trailing.unary._.exp =>
ProcessExpression(getleft(N), flags)

when unaryexp =>
Process.Expression(getright(N), flags)

when user_functioncall =>
ProcessUserFunction Call(N), flags)

when others => null
(references and corad/fcoradcalls will be processed in full system)

end case

The procedure ProcessSeqofExpressions takes as input a Seq-ofCMSNode (S),
and probably some flags. The logic is as follows:

For all x in S loop
Process_.Expression(x, flags)

end loop

Questions:

1. Are we too tolerant in Process_A_Node; should we only have null for certain expected
types, like Empty and Undefined, and error on unexpected ones? Similarly for Proces-
s_Expression

Pass 3 Desiwn Doctmne October 22. 1991 7

3.2.6 Structure-Processing Package

The StructureProcessing package will contain all the subroutines which process the
nodes which are in the Structural category. They are as follows:

The procedure Process.StructuralNode takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

case kind(N) is
when auto_datadesign => process-autodatadesign(N, flags);
when cms-system => process_cmssystem(N, flags);
(similarly for all italicized members of the structural category)
when others => null;
end case;

The procedure Process Auto Data Design takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now (mostly data). But what about
program declarations which can occur here?

The procedure ProcessCMSSystem takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

print a groupdecl for geLname(N)
ProcessNode (get-major-header-block(N))
ProcessSeq-ofNodes (geLsystemelement list(N))

The procedure Process-Local Data Design takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now (mostly data). But what about
program declarations which can occur here?

The procedure ProcessMajorHeader Block takes as input a CMSNode (N), and
probably some flags. The logic is as follows: Stubbed out for now (only options and data).

The procedure Process Minor Header Block takes as input a CMSNode (N), and
probably some flags. The logic is as follows: Stubbed out for now (only options and data).

The procedure ProcessProgramBody takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

Process_Node(geLdatadefinition_list(N)) (for now, a no-op)
ProcessSeq-ofNodes(get-stateentlist(N)) (should be all executables)
(Do we need to set a flag in Systemjnfo? (Looks like no))

(This could be moved over to be part of the processing of the subprogram declarations if it
doesn't really warrant a procedure all its own.)

The procedure Process-SubprogramDataDesign takes as input a CMS_Node (N), and
probably some flags. The logic is as follows: Stubbed out for now (data only).

Pus 3 Design Document October 22.1991 8

The procedure Process-System Data Block takes as input a CMSNode (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now (data only).

The procedure Process SystemDataDesign takes as input a CMSNode (N), and prob-
ably some flags. The logic is as follows: Stubbed out for now (mostly data). But what
about program declarations which can occur here?

The procedure Process.SystemProcedureBlock takes as input a CMSNode (N), and

probably some flags. The logic is as follows:

ProcessNode(GetMinor_Header_Block(N), flags)
(for now, ignore sys-proc.decl, which has name and type)
ProcessSeq-ofNodes(GetSysrocList(GeLSystemProcedure(N)),
flags)
(Do we need to set anything in Sys-Info? I don't think so)

Questions:

1. Are there any structural statements which will require that we perform sets in the Sys-
temInfo package?

For example, which ones trigger StartProcessingGlobals and Stop-ProcessingGlo-
bals? (This can wait until November)

2. Auto-DD's , Loc-DD's and Sys,_DD's can contain local and external program declara-
tions (placeholders only). Exactly what do we do with these? (This can wait until
November)

3.2.7 Option-Processing Package

The Option-Processing package will contain all the subroutines which process the nodes
which are in the Options category. They are as follosws:

The procedure Process Option-Node takes as input a CMSNode(N), and probably
some flags. The logic is as follows:

case kind(N) is
for each italicized member x of option category in Appendix A
when x => ProcessX(N, Flags);
when others => null;
end case;

The Process_X subroutines used in Process_Option_Node will also be in this package.
They will be added later.

Questions:

1. What are designs for low-level routines?

2. Which low-level routines need to be done for the November demo?

Pas 3 Design Document Octoer 22, 1991 9

None. The whole routine will be stubbed out for the November demo.

3. Are there any option statements which will require that we perform sets in the System_-
Info package?

3.2.8 Subprogram-Processing package

The Subprogram-Processing package will contain all the subroutines which process the
nodes which are in tte Subprogram Declaration category. They are as follows:

The procedure Process Subprogram Decl takes as input a CMS_Node(N), and probably
some flags. The logic is as follows:

case kind(N) is
for each italicized member x of subprogram decl category in Appendix A
when x => ProcessX(N, Flags);
when others => null;
end case;

The procedure ProcessExecutiveProcedureBlock takes as input a CMSNode(N),
and probably some flags. The logic is as follows:

PrintExternalIndicator(N)
(How to indicate executive status? Change middle file grammar? later)
Print("procedure ", get-designator(get-decl(N))
Print_SourceInfo(N)
Print_Formals(

get-inpuLparameter list(getdecl(N)),
empty list,
empty.jist)

ProcessNode(get-program-body(N), flags)
PrintSubprogramLists
Print_Line("end")

The procedure ProcessExternalProgramDeclaration takes as input a CMSN-
ode(N), and probably some flags. The logic is as follows: Stubbed out for now.

The procedure ProcessFunctionBlock takes as input a CMS_Node(N), and probably
some flags. The logic is as follows:

PrintExternalIndicator(N)
Print("function ", get-designator(get-decl(N))
PrintSourceInfo(N)
PrintType(get-returnypegetdecl(N))

Print_Formals(
getinput-parameter list(get_decl(N)),
empty-list,
emptyjist)

ProcessNode(geLtprogrambody(N), flags)

Pus 3 Design Document October 22, 1991 10

PrinLSubprogramLists
PrintLine("end")

The procedure ProcessLocalProgramDeclaration takes as input a CMSNode(N),
and probably some flags. The logic is as follows: Stubbed out for now.

The procedure ProcessProcedureBlock takes as input a CMSNode(N), and probably
some flags. The logic is as follows:

PrintExternalIndicator(N)
Print("procedure ", getdesignator(getdecl(N))
PrintSourcejnfo(N)
PrintFormals(

get-inpuLparameter list(get-formal-ioparameters(ge.decl(N))),
get.output.nanejlist(get-formal_io-parameters(geLdecl(N)))),
geLabnormal-exitlist(geLdecl(N)))

ProcessNode(getprogramibody(N), flags)
PrintSubprogramLists
Print Line("end")

The procedure PrintExternalIndicator takes as input a CMS_Node(N). The logic is as
follows:

if geLscope(N) = (what value?)
or else System Info.isprocessing..globals = TRUE
then PrintC'extemal ")
end if

The procedure PrintSource.Info takes as input a CMSNode(N). The logic is as fol-
lows:

Print(SourcefileDB.get_expandedline(N))
Print(SourcefileDB.get-expandedfile(N))
Print(SourcefileDB.get-actualline(N))
Print(SourcefileDB.get_actual-file(N))

The procedure Print-Formals takes as input 3 SeqofCMSNode (In, Out, and Exit).
The logic is as follows:

if In or Out is nonempty then
print "formals ("
for all x in In loop

find name and print it (with preceding comma and return if nec.)
print (" in ")
find type and print it (or else "unknown")

end loop
for all x in Out loop

find name and print it (with preceding comma and return if nec.)
print ("out ")
find type and print it (or else "unknown")

Pass 3 Design Docunent October 22.1991 1

end loop
print jineC')")

end if
(ignore exits for now; requires a middle file change)

The procedure PrintSubprogramLists takes no parameters. The logic is as follows:

Print_SimpleListClocals", Scope_Determination.get-locals)
(print contexts, if we have that information)

Print_Calls
UpdateReads_andWrites
PrinLReads
PrintWrites
PrintReadsandWrites

(no nested subroutines in CMS?)
(no header or copy files for now)
(no pseudo code for now)

ResetSubprogram.Lists

Questions:

1. What exactly is the nature of this package's interaction with the System_Info, Source-
fileDatabase and Subprogram-Lists packages?

" SourcefileDatabase: get-actualfile, geLactual-line, geLexpanded.file, get-expand-
ed-line

" SystemInfo: ifprocessing-globals

* SubprogramLists: add_tojreads/writes/calls, geLcalls/reads/writes/reads.writes/con-
text, updatejreads and_writes, resetsubprogram-lists

2. Is the Scoping package important to this package? (directly)

Yes, if we do scoping the way JRET does, where we keep lists of local scopes, and we
have routines analogous to Enter_ and Leave-Scope. Then the scoping package can
give us the list of locals. (Need push-locals, popilocals, displayjocals, is that it? Will
we keep nested and locals intertwined the way JRET does? I think perhaps we should
separate them out ...)

3. Can subprograms nest? If so, what do we have to do to accomodate that?
As I read the grammar, they cannot. However, in order to be able to extend easily to
other languages, we should make the Subprogram-Lists package able to handle it. See
that package for more ramblings.

4. For Print_External_Indicator, what values are we looking for in get-scope?

5. For PrintFormals, how do I get the type of a parameter? From a Parameter statement,
to which I hope the idref will point? Is there a default setting for those parameters not
declared in a parameter statement?

6. In ProcessExecutive_Procedure, do we want to indicate executive status in the middle
files? It will require a change in the grammar. (Decide after November)

Pss 3 Design Document Octobcr 22.1991 12

7. Will we have any context statements? They should correspond to compools, but we
don't have any nodes to represent them. (Joe is probably going to add them: even
though they are not essential to us, they are important to the translator.) Tackle after
November demo.

3.2.9 DataDeclProcessing package

The data declaration names will be stored as name+filename+line# in order to deal with
name collisions. These will be sorted out in pass4 to make the names readable. If neces-
sary, they will be stored as name+stub+O until the sourcefile_db is wired in.

The Data_Decl_Processing package will contain all the subroutines which process the
nodes which are in the Data Declaration category. They are as follows:

The procedure ProcessDataDecl takes as input a CMSNode(N), and probably some
flags. The logic is as follows:

case kind(N) is
for each italicized member x of data decl category in Appendix A
when x => ProcessX(N, Flags);
when others => null;
end case;

The procedure Process Cswitch takes as input a CMS_Node (N), and probably some
flags. The logic is as follows: Stubbed out for now.

The procedure Process DoubleSwitch Block takes as input a CMSNode (N), and
probably some flags. TIe logic is as follows: Stubbed out for now.

The procedure Process-Equals Declaration takes as input a CMSNode (N), and proba-
bly some flags. The logic is as follows:

(ignore designator and scoping for now)
ProcessExpression(get-tag.expression(N), flags)

The procedure Process FieldDeclaration takes as input a CMSNode (N), and probably
sonr- flags. The logic is as follows:

(ignore designator and scoping for now)
(ignore preset tag for now)
ProcessExpression(get repetitioncount(getjinitial values(N)), flags)
ProcessExpression(get startingbit(N), flags)
(ignore type for now)
ProcessExpression(get-wordnumber(N), flags)

The procedure Process FieldOverlayDeclaration takes as input a CMSNode (N),
and probably some flags. The logic is as follows:

(ignore field-name for now)
For all x in getsibling.list(N) loop

Pass 3 Desipn Documen OcmaW 22, 1991 13

if kind(x) = expression
then ProcessExpression(x, flags)
(else ignore for now }

end if
end loop

The procedure Process FormatDeclaration takes as input a CMSNode(N), and proba-
bly some flags. The logic is as follows:

(ignore designator, scoping and modifiers for now)
for each x in getjformat-list(N) loop

ProcessFormatjtem(x, flags)
end loop;

The procedure Process Format Item takes as input a CMS_Node(N), and probably
some flags. The logic is as follows:

case kind(N) is
when repeatedformat =>

ProcessExpression(get-count(N), flags)
ProcessFormatItem(

geLfield_descriptor(N), flags)
for all x in get-formatlist(N) loop

ProcessFormatItem(x, flags)
end loop

when formaLdescriptor =>
Process_-Expression(getLfieldwidth(N), flags)
Process_.Expression(geLfraction-size(N), flags)

when doubleformatitem =>
Process_FormatItem(

get_currentformatitem(N), flags)
ProcessFormaLltem(

get_nextformatitem(N), flags)
when formatpositioner => (both x and t)

ProcessExpression(geLcount(N), flags)
when others => null

end case

The procedure Process-IndexSwitchBlock takes as input a CMSNode (N), and prob-
ably some flags. The logic is as follows: Stubbed out for now.

The procedure Process ItemAreaDeclaration takes as input a CMSNode (N), and
probably some flags. The logic is as follows: Stubbed out for now.

The procedure Process Item Switch Block takes as input a CMSNode (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now.

The procedure ProcessLoadvrblDeclaration as input a CMSNode(N), and probably
some flags. The logic is as follows:

Pus 3 Desipn Docunent Ocober 22. 1991 14

(ignore designator, scoping and type for now)
ProcessExpression(get-initial value(N), flags)

The procedure Process LocalIndex takes as input a CMSNode (N), and probably some
flags. The logic is as follows: Stubbed out for now.

The procedure Process NitemsDeclaration takes as input a CMSNode(N), and proba-
bly some flags. The logic is as follows:

(ignore designator, scoping and type for now)
ProcessExpression(get_initial-value(N), flags)

The procedure Process_OverlayDeclaration takes as input a CMSNode (N), and prob-
ably some flags. The logic is as follows:

[ignore dataunit for now)
For all x in getLsiblingilist(N) loop

if kind(x) = expression
then ProcessExpression(x, flags)
(else ignore for now)

end if
end loop

The procedure Process ParameterDeclaration takes as input a CMSNode(N), and

probably some flags. The logic is as follows:

(ignore designator, modifier, scoping and type for now)
case kind(getinitial_value(N)) is

when expression => ProcessExpression(get-initialvalue(N), flags)
when preset-tag.withmagnitude =>

ProcessExpression(
get-preset-value(get-initial-value(N)), flags)

Process.-Expression(
get-magnitude(get-initial value(N)), flags)

Process,_Expression(
get-bit.position(getinitial-value(N)), flags)

when others => null
end case

The procedure ProcessPdoubleSwitch Block takes as input a CMSNode (N), and
probably some flags. The logic is as follows:

(ignore designators and modifiers for now)
Addto_Calls(N)

The procedure ProcessPindexSwitchBlock takes as input a CMSNode (N), and
probably some flags. The logic is as follows: stubbed out for now.

The procedure Process PitemSwitchBIock takes as input a CMSNode (N), and prob-
ably some flags. The logic is as follows: stubbed out for now.

Pass 3 Design Document October 22,1991 15

The procedure Process ScaledDataUnit takes as input a CMS_Node(N), and probably
some flags. The logic is as follows: stubbed out for now.

The procedure ProcessSimple.TypeDecl takes as input a CMSNode(N), and probably
some flags. The logic is as follows: stubbed out for now.

The procedure Process StructuredTypeDecl takes as input a CMSNode(N), and
probably some flags. The logic is as follows:

(ignore designator and visibility for now)
ProcessExpression(get-packing(N))
For all x in get-structure informationlist(N) loop

case kind(x) is
when fielddeclaration(x) =>

ProcessNode(x, flags)
when field-overlaydeclaration =>

ProcessNode(x, flags)
when range_declaration => (ignore name for now)

Process_Expression(get-upper_limit(x), flags)
Process Expression(get lowerlimit(x), flags)

end case
end loop

The procedure Process Sub-Table Declaration takes as input a CMS_Node(N), and

probably some flags. The logic is as follows:

(ignore designator, major index, modifier, and parent table for now)
if kind(get number_of__items(N)) = expression

then Process_Expression(get-numberof_items(N), flags)
(else ignore for now)

end if
ProcessExpression(get_starting_itemnumber(N), flags)

The procedure ProcessSystemIndexDeclaration takes as input a CMSNode(N), and
probably some flags. The logic is as follows:

for all x in get.system index_list(N) loop
(ignore designator for now)
ProcessExpression(getregister_number(x), flags)

end loop

The procedure Process Table Block takes as input a CMSNode(N), and probably some
flags. The logic is as folows: -

(ignore designator, indirect indicator, major index, modifier,
and table form for now)

ProcessExpression(get_dimension list(N), flags)
for all x in get-tablejlist(N) loop

case kind(x) is
when fielddeclaration(x) =>

Pus 3 Design Document Owber 22. 1991 16

ProcessNode(x, flags)
when fieldoverlayjleclaration(x) =>

ProcessNode(x, flags)
when range_declaration => (ignore name for now)

ProcessExpression(get-upper_limit(x), flags)
ProcessExpression(get lowerlimit(x), flags)

when like_table_declaration => (ignore all else for now)
Process_-Expression

(get.number of items(x), flags)
when item-areadeclaration => (ignore for now)
when sub_table_declaration =>

ProcessNode (x, flags)
end case

end loop

The procedure ProcessVariableDeclaration takes as input a CMSNode(N), and prob-
ably some flags. The logic is as follows:

(ignore designator, modifier, scoping and type for now)
case kind(geLinitial-value(N)) is

when expression => ProcessExpression(get-initialvalue(N), flags)
when preset-tag-withmagnitude =>

ProcessExpression(
get.preset-value(get-initial-value(N)), flags)

ProcessExpression(
get-magnitude(gelinitial-value(N)), flags)

ProcessExpression(
get-bit__position(getjinitial-value(N)), flags)

when others => null
end case

Questions:

1. What exactly is the nature of this package's interaction with the System_Info, Source-
fileDatabase and Scoping packages?

SystemInfo: should be query-only.(if.processing-.globals)

SourcefileDatabase: get_expandedfilename, get_expanded-line-number, get-actu-
al_filejname, get-actuallinenumber.

Scoping: tell about each declaration we come across so that it can enter it into the
appropriate scope, except for the outermost level. (addto_locals, add-to...params, is
that it?)

2. Will we need SubprogramList.AddtoReads for type declarations?

(Can be decided after November demo)

3. Should procedure switch blocks count as calls to procedures?

Currently, I am considering the call to occur in procedure call phrase instead.

Pass 3 Design Document Oer 22, 1991 17

3.2.10 Executable-Processing package

The Executable_Processing package will contain all the subroutines which process the
nodes which are in the Executable Statements category. They are as follosws:

The procedure Process ExecutableStatment takes as input a CMSNode(N), and prob-
ably some flags. The logic is as follows:

case kind(N) is
for each italicized mmber x of executable stut category in Appendix A
when x => ProcessX(N, Flags);
when others => null;
end case;

The procedure ProcessBeginBlock takes as input a CMS_Node (N), and probably
some flags. The logic is as follows:

(ignore the labels)
ProcessSeqof_.Nodes(get-statement-list(N), flags)

The procedure ProcessCswitchOff takes as input a CMSNode (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure ProcessCswitch On takes as input a CMSNode (N), and probably some
flags. The logic is as follows: Stubbed out for now.

The procedure ProcessData Statement takes as input a CMSNode (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process DebugDecl takes as input a CMSNode (N), and probably some
flags. The logic is as follows: Stubbed out for now.

The procedure ProcessDisplayPhrase takes as input a CMS_Node (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process EndTracePhrase takes as input a CMSNode (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now.

The procedure ProcessExecPhrase takes as input a CMSNode (N), and probably
some flags. The logic is as follows:

(ignore labels)
ProcessExpression(Getparameter..l (N), flags)
ProcessExpression(Get-parameter_2(N), flags)

The procedure Process Exit Phrase takes as input a CMSNode (N), and probably some
flags. The logic is as follows: Stubbed out for now.

The procedure Process Find Statement takes as input a CMSNode (N), and probably
some flags.The logic is as follows:

Pass 3 Design Document Ocmber 22. 1991 18

(ignore the if~data-clause)
Process-Node(get else_clause(N),flags)
ProcessExpression(get~find condiuon(N), flags)
Process_ Node(get-mperative statement(N), flags)
ProcessExpression(

get increment(geLby-lause(get control -clause(
get-varying-lause(N))))), flags)

ProcessExpression(
getlinlt(gethdru(get control-clause(ge-varyingsclause(N))))),
flags)

(ignore within part of control_clause for now)
Process-Expression(

get-initial-value(get -from clause(getscontrnl clause(
get-varying-lause(N))), flags)

(ignore data-unit of varying-clause for now)

The procedure Process For Block takes as input a CMSNode (N), and probably some
flags. The logic is as fol1lows:

Process-Expression(getexpression(N), flags)
Process_.Node(get else_clause(N), flags)
I ignore labels and types foi now)
for all x in getvalue_block_list(N) loop

(ignore labels)
Process...Seq-o..Expressions (get-valuejlist(x), flags)
Process-Seq ofNodes(get.statement list(x))

end loop

The procedure Process Function Return takes as input a CMSNode (N), and probably
some flags. The logic is as follows:

Process...xpression(get..yalue(N), flags)

The procedure Process-IfStatement takes as input a CMSNode (N), and probably
some flags. The logic is as follows:

Process~xpression(getsonditional-expression(N), flags)
Process_Node(get else-clause(N), flags)
for all x in get-elsifi-clause -list(N) loop

Process~xpression(get conditional-expression(x), flags)
ProcessNode(getjimperative-statement(x), flags)

end loop
Process_-Node(get-imperative statement(N), flags)

The procedure Process imperative Statement takes as input a CMSNode (N), and
probably some flags. The logic is as follows:

ProcessSeqo..Nodes(getsimple..statement list(N) flags)

Pass 3 Design Document October 22. 1991 19

The procedure Process IndexGoto Phrase takes as input a CMSNode (N), and proba-
bly some flags. The logic is as follows:

(ignore invalid and labels)
Process_Expression(getselector(N), flags'
(ignore special condition)
(stub out switch name for now)

Tne procedure Process-ItemGotoPhrase takes as input a CMSNode (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now.

The procedure ProcessPack Phrase takes as input a CMSNode (N), and probably
some flags. The logic is as foilows: Stubbed out for now.

The procedure Process PindexCallPhrase takes as input a CMSNode (N), and prob-
ably some flags. The logic is as follows:

Process_Expression(getcontrol(N), flags)
if get-switch-name(N) is a pdouble_switchblock then

for all x in (get.pdouble-list(getswitch name(N))) loop
SubprogramLists.Add toCalls(geLfirst-proc(x))
Subprogram_.Lists.Add-toCalls(geLsecond-proc(x))

end loop
else (must be a pindex-switch-block)

for all x in (get-pindex-list(get-switch name(N))) loop
Subprogram_.Lists.Add-toCalls(x)

end loop
end if
(ignore invalid, labels and parameters for now)

The procedure Process PitemCallPhrase takes as input a CMSNode (11), and proba-
bly some flags. The logic is as follows:

(ignore invalids, labels)
ProcessSeq-ofExpressions(getjinput(geLparameters(N)), flags)
for all x in (geLpitem-list(getswitchname(N)) loop

AddtoCalls(get-proc _name(x))
end loop

The procedure Process ProcedureReturn takes as input a CMS_Node (N), and proba-
bly some flags. The logic is as follows: Stubbed out for now.

The procedure Process Set Phrase takes as input a CMSNode (N), and probably some
flags. The logic is as follows:

Process_Expression(geLsource(N), flags)
(ignore labels, overflow, remainder, and targets for now)

The procedure ProcessShiftPhrase takes as input a CMSNode (N), and probably
some flags. The logic is as follows:

Pass 3 Deign Docmnent October 22. 1991 20

ProcessExpression(getshifLcount(N), flags)
f ignore data-unit, direction, labels, shift-type, and target for now)

The procedure ProcessSimple Goto Phrase takes as input a CMSNode (N), and prob-
ably some flags. The logic is as follows: Stubbed out for now.

The procedure ProcessSnapPhrase takes as input a CMSNode (N), and probably
some flags. The logic is as follows:

ProcessExpression(geLmagnitude(get-preset-magnitude(N)), flags)
ProcessExpression(get-biLposition(get-presetmagnitude(N)), flags)
Iignore dataunit and labels for now)

The procedure Process SubstitutionDecl takes as input a CMSNode (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process Supplied Procedure CallPhrase takes as input a CMSNode
(N), and probably some flags. The logic is as follows:

(ignore labels and procedure name)
ProcessSeqOfExpressions(get-input(get-parameters(N)), flags)
(ignore ouput parameters for now)

The procedure ProcessSwapPhrase takes as input a CMSNode (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process TracePhrase takes as input a CMS_.Node (N), and probably
some flags. The logic is as follows: Stubbed out for now.

The procedure Process UserFunctionCall takes as input a CMSNode (N), and proba-
bly some flags. The logic is as follows:

SubprogramLists.AddToCalls(getfunction name(N))
Process SeqOLExpressions(getinpu-parameters(N), flags)

The procedure Process User Procedure Call Phrase takes as input a CMSNode (N),
and probably some flags. The logic is as follows:

SubprogramLists.addtocalls(geLproc-name(N))
ProcessSeqfExpressions(geLinput(getparameters(N)), flags)
(ignore labels, exit parameters, and ouput parameters for now)

The procedure Process Expression takes as input a CMSNode (N), and probably some
i4ags. The logic is as follows:

case kind(N) is
when binary_.exp =>

ProcessExpression(get-left(N), flags)
ProcessExpression(getright(N), flags)

when bit-call => ProcessExpression(ge-bit.count(N), flags)
(ignore dataunit for now)

Pass 3 Design Document October 22, 1991 21

ProcessExpression(get-starting__bit(N), flags)
when builtin_func =>

Process.Seq-oLExpressions(
get-input-parameters(N), flags)

when charcall => ProcessExpression(getcharcount(N), flags)
{ ignore data-unit for now)
ProcessExpression(geLstarting-char(N),flags)

when paren-exp =>
Process._Expression(getright(N), flags)

when trailing-unaryexp =>
ProcessExpression(geLleft(N), flags)

when unary-exp =>
Processxpression(get_right(N), flags)

when userfunction_call =>
ProcessUserFunctionCall(N), flags)

when others => null
(references and corad/fcorad_calls will be processed in full system)

end case

Questions:

1. What exactly is the nature of this package's interaction with the System-Info, Scoping
and SubprogramLists packages?

SystemInfo: Query-only

Scoping: is-global

Subprogram-Lists: add_to_reads; add_to_writes; add_tocalls

3.2.11 PrintMiddleFile package

The PrintMiddle-File package will contain utility routines to assist the Process_* pack-
ages in their printing. We had considered a template approach in which all the printing was
controlled in this package, using data from the other packages, but that quickly got very
cumbersome, and didn't seem to have much benefit in this case. Instead we will have
"helper" routines which know the format for certain types of items (expanded vs unex-
panded variable names, for instance) and different types of lists. We will feel free to add
new ones as needed. We intend this to be a generic package, but will adjust that intention
as required.

The procedure Print SimpleList takes as input a string (Label) and a Seq_oLSymbols
(S). The logic is as follows:

if S is non-empty then
Print(Label, "(")
for each x in S loop

Print (x) (with preceding comma, if necessary)

Pus 3 Design Document Omober 22,1991 22

end loop
Print-line(")")

end if

Questions:

1. What procedures are needed?

" PrintExpanded_Identifier (esp. for variables)

" PrintUnexpanded_Identifier (esp. for subroutines)

" PrintList_of_ExpandedIdentifiers

" PrintListofUnexpanded_Identifiers

3.2.12 SourcefileDatabase package

The SourcefileDatabase package will keep track of which source files are currently being
processed, and will calculate expanded files and line numbers for us. We will reuse as
much as possible from JRET.

Questions:

1. What subroutines are in this package?

" set_topievel-source filename

" get.topjeveLsource filename

" getjopjevel-source file..symbol

" geLtop-level-file_basename

" holdsourceinfo (parser will use)

" attachsource_info (parser will use)

" getexpandedfile_name (DataDeclProcessing and Subprogram-Processing)

* get-expandedjlinenumber (DataDeclProcessing and SubprogramProcessing)

• geLactual_file_name (DataDeci_Processing and Subprogram-Processing)

" get_actualline_number (DataDecLProcessing and SubprogramProcessing)

2. Are there any alterations we need to make to this package?
Want to make it generic. Passing in Node type, EQ function, and possibly Default node
value. Also, want to change it so it uses the generic hashing routines.

3.2.13 Scoping package

The Scope_-Determination package will keep track of which data items are global and
which are local We will reuse as much as possible from JRET (Most comes from
extract-info). I had originally intended the Scope_Determination package to contain all

Pass 3 Desip Docteum October 22. 1991 23

the language-dependent scoping rules, but JRET seems to allow the data-declaration rou-
tines to take care of that, and ScopeDetermination just keeps track of those decisions.
This is reasonable, and will allow ScopeDetermination to be more language-independent
(in fact it should be fully language-independent, except for the type of nodes, that's why
we'll make it generic).

We still probably want to have a separate procedure (here or elsewhere), which, given a
declaration (and maybe the System-Info package), determines whether it is local or glo-
bal. (The idea is to keep these rules as contained as possible.)

Questions:

1. What subroutines are in this package?

Probably want the following:

" push-locals, poplocals(renamed?) (Subprogram-Processing)

" localsdisplay (Subprogram-Processing)

" add to locals (DataDecl Processing)

• add_toparams (DataDeclProcessing)

• is-global (Executable-Processing)

* islocal (unused for now?)

* HASH (will be passed in as a function to the generic)

Sparamsnode, params.seq, locals-node, locals seq (DataDeclProcessing?)

2. What structural statements' data declarations are by definition global (SYS-DD, COM-
POOL?, ...)

3. Do we need to change this package?

Want to make it generic

4. What other packages will this package need to communicate with?
SubprogramProcessing, DataDeclProcessing, ExecutableProcessing

5. Is there a better name for this package?

3.2.14 Subprogram Lists package

The SubprogramxLists package will serve to aid communication between the Subpro-
gram-Processing and ExecutableProcessing packages. It will maintain the read, write,
read/write, formals and calls lists. We will reuse as much as possible from JRET. We will
use the Seq package (part of ADL) to build our lists.

The Calls List, ReadsList, WritesList,Reads Writes-List are each a linked list of
declaration nodes. We shall provide the following visible routines:

The procedure Add to Calls takes as input a CMSnode (N). It gets the
name (a symbol) and adds it to Calls-List.

Pass 3 Design Documnt October 22. 1991 24

The procedure Add to Reads takes as input a CMSnode (N). It gets the
name (a symbol) and adds it to Reads-List.

The procedure Add to Writes takes as input a CMS-node (N). It gets the
name (a symbol) and adds it to Writes-List.

The function Print Calls takes no input and returns no output. It prints out
the Cals_List, if one exists. (It must handle switch blocks as well as "reg-
ular" procedure and function calls.)

The function Print Reads takes no input and returns no output. It prints
out the ReadsLisi, if one exists.

The function Print Reads and Writes takes no input and returns no out-
put. It prints out the Reads-WritesList, if one exists.

The function Print Writes takes no input and returns no output. It prints
out the WritesList, if one exists.

The procedure UpdateReadsandWrites takes no input and returns
nothing. It looks for symbols which appear on both the Reads List and the
Writes-List, and removes them to the ReadsWritesList.

Questions:

1. Which lists do we need to keep track of?

Locals will be taken care of by the ScopeDetermination package.

Formals will be taken care of in Subprogram-Processing

Reads, writes, readswrites, and calls will be taken care of here

What about Macros, and Contexts? Ignored for now.

2. How do we handle nested subprograms? Should they be tightly bound to locals (as in
JRET) or done separately?

I think CMS2 doesn't have nested subprograms. However, I think we need to handle
this issue anyway (at least from a design standpoint; we could implement only the sim-
ple case, leaving an easy way to extend it.)

I think that lists that we keep could be kept in hash tables, where the key would be the
subprogram.decl and the value would be the read list (depending on which hash table
was queried). The nested subprogram list(s) could be kept in this package along with
the others that we're already keeping.
Alternatively, we could just use stacks, pushing and popping as we start and end the
subprograms.

3. What other packages will this package need to communicate with?

* ExecutableProcessing: add to reads, addto_writes, addtocalls

Pass 3 Design Document October 22, 1991 25

* SubprogramProcessing: updatereadsandwrites, reset subprogram-lists, print_-

reads, print_writes, printreads_andwrites, print-calls

s PrintMiddle_File: we'll want to use those utilities.

4. See Declaration_Processing for discussion of how we will store names...

May not be pertinent to this package, as the printing utilities should hide it...

3.2.15 System-Info package

The System_Info package will serve to aid communication between the Options_ and
Structure. Processing packages on the one hand and the Subprogram-, Data- and Execut-
ableProcessing packages on the other. It will maintain information about the state of the
system which will affect the interpretation of other nodes.

Questions:

1. Exactly which information needs to be maintained here?

- Globals processing - ie are we in a segment of code where all declarations are by
default external? (StarLProcessingGlobals, Stop-ProcessingGlobals, If_Processing
Globals)

* More as needed

2. What packages will this package need to communicate with?

* DataProcessing, ExecutableProcessing, Subprogram Processing: If-processing__glo-
bals

* Structure_Processing: Start_ProcessingGlobals, Stop.ProcessingGlobals

3. If the only thing to be in here is isprocessingglobals, perhaps that should go into Sco-
peDetermination, and this package should be eliminated?

To be decided after November demo.

3.2.16 CMSRecords package

The CMSrecords package defines the ADL structure which will serve as the underpin-
ning of our system. We will reuse it from the CMS-2 to Ada translator.

Questions:

1. Are there any changes needed?

3.2.17 CMS_Interface package

The CMSinterface package allows us to access the ADL structure which serves as the
underpinning of our system. We will reuse it from the CMS-2 to Ada translator.

Questions:

Pass 3 Dieip Dommem October 22. 1991 26

1. Are any changes necessary?
Yes. NewCMSNode needs to initialize the fields to the Empty_Node where they are
currently being left as the null pointer.

3.2.18 Symbol Table packages

We will reuse the CMS-2 to Ada translator's symbol tables and searches.

Questions:

1. Are any changes necessary?

Pas 3 Design Docunn nt October 22. 1991 27

Appendix A: Node Categories

Structural Options Subprogram Data Executable Substatement
Declarations Declarations Statements Clauses

auto_data deuign cniodedecl exjecrblock cswieAk be&inblock dwcii e
cUU.715i.V addruscounter _separa t- rogramn di-0d doul5W~IS kb0Ck icsitch-off tnpamen
direc-cdeblocit tiondeci function h ok Uqsiah.Aecklox a aWitchoiion 569- 7 -- p
local data design Clortt*1onUinormti local Jrgandcl AieW&-wur" duta_aemen bir call
mjor-hader..block czp-Pbject5pcC procedurr-block filevOerfay-AcL debufdid bod sunjp

ano-header-block mv.object-pec formatdeck-dwon dulspayj~Aras buWI. June
progr-hbody crg-objeqLspcC index awitch block end jraceaws by-dama
subprogram _data deuigx cri-oject,pec inpulitded excprare chaoacter type
system data_block cr-.objeqtipec ioj-bras =ktjhrase char call
sysen data jd-iign sadwnp-object-spec item area ded Anm-slatensent coradenill

system-procedure-block 55.objctspcC tern switch block for..block componnt ref
scrg-objet..spec loodwblddad fnctionr retMi controLcluse
scri-object..spec lil bodu satema a&ect rf
sct -object spec: nitems~jdckwtiox impere-akat- doublejtvitchjve.
smobject-spec: nonstandard-filc-ecfod n doublejormaiitem
coll-opion ugis-- index-olo-phee enslc
eswicldeleede ovurlay.Aeekarntion itmgloWs end-cswitcht
eectivejechrtion pa-fwej decl tUPJ-eec-Pwwc-decl
farmodeoption pdouble switch -block Pzckj-hras fcradcall
hex-.option pindex rsvitch- block pindezXcaft ph rase fit ~spec jfcat iox
inldependent-option piaw. twitch block Ptlens-alf-phrase flxadyp
level-option scoleAdk-n_ resumC.vh- floau
line..option sim*~ typ did ''c -w-PhOII

mode Jield declaration szringfo-nded se-haeforn'eud-riptor

mode vrbl declaration 9trucuraL type-- ledPrm format list
fnonitoroption ,.hbfabe_due sbnkS~ rs from ciause

nisal-otio ssidsd-fle-dd wapPh- funcdion deel
noni-optlo. systea indrjec dad-hI Lndaoief

Obetopi me-&block Subseitwtionsdecl Index-cleuse

opinizcoption wuisabe.-aei 9E cald.ph- edure- idg.W
options..dedaxion &*jn awfck lieu

pit-inW p-sng-de fabeoPtion

Jtserjuness encali cl dat le
scale mode-declarstion e-rcdeca -o _sir
sourcu -optiot -phi.,. Ntilor A"dW
single-peasi-njeclnodre

stnxwed-option prne
(For Nov, Oir's pdobit
only) #01

(Tob be reveiwed)

Pass 3 Design Document October 22.99 M28

Substatement
Clauses (ctd)
r~peaed;riqfon-

spiildCadaion

slar-daza mxk

ssafutz

stringf-jnist

strngfo1rmaoibon

sysfpn~jd-draw

sysenprodum

A~rn-elas"

bsilaguaaly-xp

tomtposiboner

twOwofd-inifilizer

uaryaI7ep

FeilwAhmagnifude

value Mock

withiaxckuse

xjo-lmadsciptor

(For Novanber. only s/r s cbecked)

In the above table, italics indicate items which are to be processed in the full system and
bold italics indicates items to be processed in the November demo system.

Pas 3 Deiw Docunma Octber 22, 1991 29

